Application of Tai's Trial Function in an Improved Circuit Theory Two-Term Representation

A. I. IMORO, Y. KANI, Naoki INAGAKI, Nobuyoshi KIKUMA

Nagoya Institute of Technology
Gokiso-cho, Showa-ku
Nagoya 466, Japan

Abstract

A new trial function is used to derive the elements of the impedance matrix in the Improved Circuit Theory (ICT) for its application to multielement antennas. Results of the new ICT impedance are comparable in accuracy with the general method of moments. All the new functions are expressed in closed-form, and so still presents an ICT algorithm which is superior in terms of computer running time compared to method of moments.

1. Introduction

The Improved Circuit Theory (ICT) for Multielement Antennas uses a King-Middleton two-term trial function for the current distribution in an extended variational principle to derive the formula for the generalized impedance for multielement antennas of typical configuration as shown in Fig. 1 [1]. This represents a great improvement in the EMF theory evaluation of center-fed dipole antenna arrays. This is because the ICT method is able to take into adequate consideration the effects of mutual coupling without necessarily using an excessive number of current expansion functions as it is case with other methods like method of moments (MoM) [2]. The ICT method has also been implemented at much reduced CPU time by completely eliminating all time consuming numerical integration functions in its algorithm [3-4].

However, as we would show later, the ICT method is inadequate for much longer antenna lengths. Therefore for accurate evaluation of such antenna systems we are forced to use more conventional methods like MoM which whose application is not restricted to the antenna length but which is well known to be inherently time intensive and requires considerable amount of computer storage space.

In this paper, we present the results of the impedance of the ICT method as a result of a new choice in a trial function shown by C. T. Tai [5-6] to be far more superior in quality when used to derive the input impedance of center-fed dipole arrays. It is shown that the new impedance formula leads to the possibility of much extended application of the ICT method and also establishes the valid region of the conventional ICT method.
2. Tai's Trial Function in ICT Two-term Representation

In the classical King-Middleton ICT two-term representation, the generalized impedance matrix is derived with the with the two-term current functions

\[
f_i^1(z_i) = \frac{\sin k(h - |z_i|)}{\sin kh}
\]

\[
f_i^2(z_j) = \frac{1 - \cos k(h - |z_j|)}{\cos kh}
\]

But C. T. Tai has shown the these two trial functions are not sufficiently accurate for antenna lengths greater than one wavelength for the case of single elements [5-6]. To extend Tai's suggestion to multielement antennas we have also replaced second component of the trial function as follows

\[
f_i^2(z_j) = \frac{k(h - |z_j|) \cos(h - |z_j|)}{kh \cos kh}
\]

Eqs. 1 and 3 have therefore been used in a new two-term representation to derive the elements of the impedance matrix all expressible in closed-form has shown in the appendix.

3. Results and Discussion

We have validated the new ICT formula by comparing the input impedances computed with it to other conventional methods. Fig. 2 compares the admittances computed for different antenna lengths using C. T. Tai's trial function, King-Middleton ICT, C. T. Tai's single element variational [5] and MoM [2]. We can see the considerable agreement between our new formula and MoM in particular. The results also establishes the region of validity of the conventional ICT formula because as can be deduced from Figs. 2, it is inadequate for element lengths above 1.8\lambda.

The attractiveness of the ICT method is captured in Table 1 which compares a typical CPU time on an NEC PC-9801VX for the various methods.

4. Conclusion

We have shown that the use of C. T. Tai's trial function in a two-term ICT representation leads to an impedance formula which has the possibility of expanding the region of validity of the ICT method in the analysis of linear wire antennas. Since all components of the new formula are expressible in closed-form, ICT is still computationally efficient in terms of CPU time. We have also established the valid region of the conventional ICT method.

The results reported are applicable to only equal length center-fed dipole arrays, but the same procedure can be used to derive a more general formula for an array of center-fed dipoles of arbitrary length.
5. Appendix

Using the current functions in Eqs. 3 and 5 in a two-term representation, it can be shown that the elements of the impedance matrix in ICT can be expressed as

\[
Z_{ij}^{11} = j30 \csc^2 k h \{(2 + \cos 2 k h) S_{kd}(k h) + \sin 2 k h [C_{kd}(2 k h) - 2 C_{kd}(k h)] - \cos 2 k h [S_{kd}(2 k h) - S_{kd}(k h)]\}
\]

\[
Z_{ij}^{12} = \frac{j60 \csc 2 k h}{k h} \left[2 k h \cos 2 k h C_{kd}(2 k h) + 2 k h \sin 2 k h S_{kd}(2 k h) - \cos 2 k h C U_{1kd}(2 k h) + \sin 2 k h S U_{1kd}(2 k h) + 2(1 + \cos 2 k h) C U_{1kd}(k h) \right. \\
\left. + 2 k h \sin 2 k h S_{kd}(k h) - 3 k h \sin 2 k h S_{kd}(k h) \right]
\]

\[
Z_{ij}^{22} = j \frac{30}{k h^2(1 + \cos 2 k h)} \left\{ [- \sin 2 k h C U_{2kd}(2 k h) + \cos 2 k h S U_{2kd}(2 k h) + 4 k h \sin 2 k h] C U_{1kd}(2 k h) + 4 k h \sin 2 k h C U_{1kd}(k h) + 4 k h \sin 2 k h C U_{1kd}(k h) \right. \\
\left. - \cos 2 k h] C U_{1kd}(2 k h) - \cos 2 k h] C U_{1kd}(2 k h) \right\}
\]

\[
C_{D}(x) \text{ and } S_{D}(x) \text{ are well documented closed-form functions defined in while the following are new functions [7]:}
\]

\[
C U_{1D}(x) = \frac{1}{2} \left[-2(D + j) e^{-j D} + j(e^{-j v} + e^{-j u}) \right.
\]
\[
+ D^2 \left[\frac{e^{-j v}}{v} + \frac{e^{-j u}}{u} \right] + E_i[-j u] \left[E_i[-j u] - 2 E_i[-j D] \right] \right]
\]

\[
S U_{1D}(x) = \frac{1}{2} \left[D^2 \left(\frac{e^{-j v}}{v} - \frac{e^{-j u}}{u} \right) - (e^{-j v} - e^{-j u}) \right.
\]
\[
+ D^2 \left[E_i[-j u] - E_i[-j D] \right] \right]
\]

\[
C U_{2D}(x) = \frac{1}{2} \left[\frac{1}{2} + j \frac{v}{2} - \left(\frac{D^2}{2 u} \right)^2 + j \frac{D^2}{4 u} \right] e^{-j D}
\]
\[
\left[\frac{1}{2} + j \frac{u}{2} - \left(\frac{D^2}{2 u} \right)^2 + j \frac{D^2}{4 u} \right] e^{-j u}
\]
\[
+ D^2 \left[1 + \left(\frac{D}{2} \right)^2 \right] \left[E_i[-j u] - E_i[-j D] \right] \right]
\]

\[
S U_{2D}(x) = \frac{j}{2} \left[-1 - j D + \frac{D^2}{2} - j \frac{D^3}{2} \right] e^{-j D}
\]
\[
\left[\frac{1}{2} + j \frac{v}{2} - \left(\frac{D^2}{2 u} \right)^2 + j \frac{D^2}{4 u} \right] e^{-j u}
\]
\[
+ \left[\frac{1}{2} + j \frac{u}{2} - \left(\frac{D^2}{2 u} \right)^2 + j \frac{D^2}{4 u} \right] e^{-j u}
\]
\[
+ D^2 \left[1 + \left(\frac{D}{2} \right)^2 \right] [E_i[-j u] - E_i[-j D]] \right]
\]

\[
u = \sqrt{D^2 + x^2} - x
\]

\[
u = \sqrt{D^2 + x^2} + x
\]
Table 1: CPU Time on NEC PC-9801 VX.

<table>
<thead>
<tr>
<th>Method</th>
<th>Time [seconds]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tai ICT</td>
<td>0.11</td>
</tr>
<tr>
<td>King-Middleton ICT</td>
<td>0.27</td>
</tr>
<tr>
<td>Faster ICT [3]</td>
<td>0.07</td>
</tr>
<tr>
<td>Tai Variational EMF</td>
<td>0.03</td>
</tr>
<tr>
<td>Method of Moments</td>
<td>96</td>
</tr>
</tbody>
</table>

References

Figure 2: Input Admittance for $\Omega = 10$
(a) Conductance, (b) Susceptance.
Trial and error is a fundamental method of problem-solving. It is characterized by repeated, varied attempts which are continued until success, or until the practicer stops trying. According to W.H. Thorpe, the term was devised by C. Lloyd Morgan (1852–1936) after trying out similar phrases “trial and failure” and “trial and practice”. Under Morgan's Canon, animal behaviour should be explained in the simplest possible way. Where behaviour seems to imply higher mental processes, it might be explained by From Circuit Theory. L. A. ZADEHT, Summary-The past two decades have witnessed profound changes in the composition, functions and the level of complexity of electrical as well as electronic systems which are employed in modern technology. I. INTRODUCTION HE past two decades have witnessed an evolution of classical circuit theory into a field of science whose domain of application far transcends the analysis and synthesis of RLC networks. Among these, to mention a few, are his representation of nonlinear systems in terms of a series of Laguerre polynomials and Hermite functions, his theory of prediction and filtering, his generalized harmonic analysis, his cinemaintegraph, the Paley-Wiener criterion, and the Wiener process. Improving Discrete Latent Representations With Differentiable Approximation Bridges. Jason Ramapuram. Modern neural network training relies on piece-wise (sub-)differentiable functions in order to use backpropagation to update model parameters. In this work, we introduce a novel method to allow simple non-differentiable functions at intermediary layers of deep neural networks. Makes it a strong candidate for applications requiring non-differentiable functions. Adding a learning rate scheduler to the DAB based training is likely to improve convergence time, however this is left to future work. 4.3. Image Classification. In steady state a.c. circuit theory, the ability of a circuit to accept a current flow resulting from a given driving voltage is called the impedance of the circuit. Since current and voltage are duals the impedance parameter must also have a dual, called admittance. 4.1 Circuit variables. As current and voltage are sinusoidal functions of time, varying at a single and constant frequency, they are regarded as rotating vectors and can be drawn as plan vectors (that is, vectors defined by two co-ordinates) on a vector diagram. Voltage rise is a rise in potential measured in the direction of current flow between two points in a circuit. Voltage drop is the converse. A circuit element with a voltage rise across it acts as a source of energy.