THEORY AND PROBLEMS

OF

DIFFERENTIAL EQUATIONS

IN SI METRIC UNITS

FIRST EDITION

BY

FRANK AYRES, JR, PhD
Professor and Head, Department of Mathematics,
Dickinson College

SI EDITION adapted by

J C AULT, MSc
Lecturer in Mathematics,
University of Leicester

SCHAUM'S OUTLINE SERIES
McGraw-Hill Book Company
Singapore
Contents

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>ORIGIN OF DIFFERENTIAL EQUATIONS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>ORIGIN OF DIFFERENTIAL EQUATIONS</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>SOLUTIONS OF DIFFERENTIAL EQUATIONS</td>
<td>7</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>EQUATIONS OF FIRST ORDER AND FIRST DEGREE</td>
<td>12</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>EQUATIONS OF FIRST ORDER AND FIRST DEGREE—VARIABLES SEPARABLE AND REDUCTION TO VARIABLES SEPARABLE</td>
<td>15</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>EQUATIONS OF FIRST ORDER AND FIRST DEGREE—EXACT EQUATIONS AND REDUCTION TO EXACT EQUATIONS</td>
<td>24</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>EQUATIONS OF FIRST ORDER AND FIRST DEGREE—LINEAR EQUATIONS AND THOSE REDUCIBLE TO THAT FORM</td>
<td>35</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>GEOMETRIC APPLICATIONS</td>
<td>41</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>PHYSICAL APPLICATIONS</td>
<td>49</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>EQUATIONS OF FIRST ORDER AND HIGHER DEGREE</td>
<td>61</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>SINGULAR SOLUTIONS—EXTRANEOUS LOCI</td>
<td>67</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>APPLICATIONS OF FIRST ORDER AND HIGHER DEGREE EQUATIONS</td>
<td>75</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>LINEAR EQUATIONS OF ORDER n</td>
<td>78</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS</td>
<td>82</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS</td>
<td>87</td>
</tr>
<tr>
<td>Chapter 15</td>
<td>LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS—VARIATION OF PARAMETERS, UNDETERMINED COEFFICIENTS</td>
<td>93</td>
</tr>
<tr>
<td>Chapter 16</td>
<td>LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS—SHORT METHODS</td>
<td>99</td>
</tr>
<tr>
<td>Chapter 17</td>
<td>LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS—THE CAUCHY AND LEGENDRE LINEAR EQUATIONS</td>
<td>108</td>
</tr>
<tr>
<td>Chapter 18</td>
<td>LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS—EQUATIONS OF THE SECOND ORDER</td>
<td>111</td>
</tr>
<tr>
<td>Chapter 19</td>
<td>LINEAR EQUATIONS WITH VARIABLE COEFFICIENTS—MISCELLANEOUS TYPES</td>
<td>122</td>
</tr>
<tr>
<td>Chapter 20</td>
<td>APPLICATIONS OF LINEAR EQUATIONS</td>
<td>133</td>
</tr>
<tr>
<td>Chapter 21</td>
<td>SYSTEMS OF SIMULTANEOUS LINEAR EQUATIONS</td>
<td>157</td>
</tr>
<tr>
<td>Chapter 22</td>
<td>TOTAL DIFFERENTIAL EQUATIONS</td>
<td>164</td>
</tr>
<tr>
<td>Chapter 23</td>
<td>APPLICATIONS OF TOTAL AND SIMULTANEOUS EQUATIONS</td>
<td>178</td>
</tr>
<tr>
<td>Chapter 24</td>
<td>NUMERICAL APPROXIMATIONS TO SOLUTIONS</td>
<td>186</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Chapter 25 INTEGRATION IN SERIES</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>Chapter 26 INTEGRATION IN SERIES</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>Chapter 27 THE LEGENDRE, BESSEL, AND GAUSS EQUATIONS</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>Chapter 28 PARTIAL DIFFERENTIAL EQUATIONS</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>Chapter 29 LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF ORDER ONE</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>Chapter 30 NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF ORDER ONE</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Chapter 31 HOMOGENEOUS PARTIAL DIFFERENTIAL EQUATIONS OF HIGHER ORDER WITH CONSTANT COEFFICIENTS</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>Chapter 32 NON-HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>Chapter 33 PARTIAL DIFFERENTIAL EQUATIONS OF ORDER TWO WITH VARIABLE COEFFICIENTS</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td>294</td>
<td></td>
</tr>
</tbody>
</table>
Index

Acceleration, 49
Amplitude, 134
Applications,
of first order and higher degree equations, 75–77
 geometric, 41–48, 75–77, 133, 136, 178
 polar coordinates, 42, 46
 rectangular coordinates, 41, 44, 45
 trajectories, 43, 47, 48
of linear equations, 133–156
 electric circuits, 136, 138, 140–143
 physical, 49–60, 133–156, 178–185
 electric circuits, 57, 58, 136, 151–154
 horizontal beams, 134–136, 145–151
 motion along a straight line, 49, 54–56, 138
 motion of a complex system, 139
 motion of a pendulum, 137
 oscillatory motion, 133, 134
 springs, 140–143
Approximation,
umerical, 186–196
Arbitrary constant, 78, 231, 234
Arbitrary function, 232–236
Auxiliary system, 239
Beams,
horizontal, 134–136, 145–151
Bernoulli’s equation, 35, 37
Bessel equation, 222, 227, 228
Bessel functions, 222, 228
Cauchy linear equation, 108, 109, 113
Cauchy (Ordinary) Differential Equation, 269
C-discriminant, 69–74
Characteristic equation
 complex roots, 83, 85
 distinct real roots, 83, 84
 repeated roots, 83, 85
Characteristic Roots, 83, 85
Charpit’s method, 247, 253
Clairaut equation, 62, 64, 65, 71, 75, 76, 124
Complete differential, 12
Complete solution,
of ordinary differential equation, 79
 of partial differential equation, 240, 244–253
Conditions,
 for exactness 24, 165
 for integrability, 164, 167–170
 for linear independence, 78, 80, 81
Damping factor, 134
Degree, of differential equation 1, 61
Derivatives,
 ordinary, 1
 partial, 1
Differential equation,
 Bernoulli, 35, 37
 Bessel, 222, 227, 228
 Clairaut (see Clairaut equation) 62, 64, 65, 71, 75, 76, 124
 conditions for solubility of, 7
definition, 1
 exact 12, 24–34, 123, 129–131
 extended Clairaut, 234, 246
 first order, first degree, 12–40
 exact equations, 12, 24–34
 homogeneous equations, 15–18
 linear equations, 35–40
 linear but not homogeneous, 16, 19, 20
 miscellaneous substitutions, 16, 21
 variables separable, 13, 15–23
 first order, higher degree, 61–66
 first order, simultaneous, 189, 193, 194
 Gauss, 223, 229
 homogeneous, 15, 17, 18, 78, 82–86
 homogeneous partial, 255–264
 Legendre, 220, 221, 224–226
 Legendre linear, 108–110
 linear with constant coefficients, 87–107
 systems of, 157–163
 undetermined coefficients, 93, 96–98
 variation of Parameters, 93–96
 linear, homogenous with constant coefficients, 82–86
 or order one, 13, 35–40
 of order n, 78–81, 122–132
 of order two, 111–121, 199, 202–205
 partial, first order, 238–243, 277
 partial, higher, order, 276–293
 with variable coefficients, 108–132
 non-homogeneous, partial, irreducible, 268, 269, 272, 273
 non-homogeneous, partial, reducible, 265–268, 270–272
 non-linear partial, 238, 244–254, 280
 numerical solution, 186–196
 ordinary, 1, 157
 origin of, 1–6
 partial 1, 157, 231–293
 order of, 231
 partial, first order, 238–254
 partial, higher order,
 constant coefficients, 255–275
 variable coefficients, 276–293
 solutions of, 7–11
 solutions in series, 197–211
 systems of, 157–163
 total, 164–177
Direction field, 8
Discriminant, 69–74
Discriminant relation, 69, 70
D-Notation, 82
Electric circuits, 57, 58, 136, 151–154, 183
Exact differential, 24, 25

294
INDEX

Exact equations, 12, 24–34, 123, 129–131
reduction to, 24
Existence theorem, 7
Extended Clairaut equation, 234, 246
Extraneous equation, 68
Extraneous loci, 67–74
First derivative method, 187, 191
Force, 49
Frequency, 134
Functions,
 Bessel, 222, 228
 complementary, 79, 257, 266
 homogeneous, 15
Gauss equation, 223, 229
General solution,
 of ordinary differential equation, 7
 of partial differential equation, 238–242, 244, 245, 256, 257, 265–267
Harmonic motion, 133, 134, 137, 138, 140–143
Homogeneous equation, 15–18
Homogeneous function, 15
Homogeneous linear equation, 78–86, 255–264
Hooke’s law, 55
Hypergeometric series, 223
Indicial equation, 208, 210, 212
 Roots Differing by an Integer, 212
Roots Equal, 210
Infinite series, 197
Integral curve, 7–9, 41, 43
Integration factor, 12, 24
Integration in Series, 197–205, 206–219
Intermediate integral, 280
Irreducible equation, 265, 268, 269, 272, 273
Kutta’s Simpson’s method, 188, 193, 195
Lagrange system, 239
Laplace’s transformation, 278, 279, 286, 287, 292
Large values of x, 208, 216
Legendre equation, 220, 221, 224–226
Legendre linear equation, 108–110
Legendre polynomial, 221, 226
Linear equation (see also Differential equation, linear) with Variable Coefficients:
 Cauchy & Legendre Linear Equations, 108–110
 Equations of the second order, 111–121
 exact equations, 123, 129–132
 dependent variable absent, 122, 124
 independent variable absent, 122, 125, 126
 particular integral known, 123, 126–128
Loci, extraneous, 68
Locus,
 cusp, 69, 73
 nodal, 69, 70, 72
 tac, 69, 72
Mass, 49
Monge’s Equations, 281, 282, 288, 289
Monge’s method, 288, 292
Newton’s law of cooling, 51
Newton’s second law of motion, 49
Non-homogeneous linear equation, 16, 19
Non-homogeneous linear partial differential equation,
 reducible, 265–268, 270–272

irreducible, 268, 269, 272, 273
with Constant Coefficients, 265–275
Non-linear partial differential equation, 244–254, 280
Numerical Approximations to Solutions, 186–195
Operators, factorization of, 112
Order,
 of differential equation, 1, 5
 reduction of, 122
Origin,
 of ordinary differential equation, 1–6
 of partial differential equation, 231
Orthogonal trajectories, 43, 47, 48
Parameters, variation of, 93, 94
Partial differential equations, 1, 231–237
Partial fractions, method of, 88
Particular Integral, 79, 257, 266
Particular integral curve, 41
Particular solution, 7, 9, 11, 79
p-discriminant, 69–74
Period, 134
Picard’s method, 186, 189, 190, 193
Point,
 ordinary, 199
 regular singular, 206
 singular, 199, 206
Primitive, 1–4
Recursion formula, 198
Reduction of order, 122
Rodrigues’ Formula, 224, 225
Runge’s method, 188, 192, 194
Separation of variable, 13, 15–23
Series,
 hypergeometric, 223
 solution in, 197
Taylor, 187, 191, 194
Short methods,
 ordinary differential equation, 99–107
 partial differential equation, 266
Simultaneous equations, 157–163
Singular solution, 7, 67–74, 244
Solutions,
 complete, 79, 240, 244
 general, 7, 11, 238, 242, 244
 linearly independent, 78
 particular, 7
 in series, 197
 singular, 7, 64–74, 244
Springs, 140
Steady-state phenomenon, 134
S.I. System, 49
System of equations, 157–163
Taylor series, 187, 190, 191, 194
Total differential equation, 164–177
Trajectories, 43
Transient phenomenon, 134
Undetermined coefficients, method of, 93, 96, 98, 258
Variables separable, 13, 15–23
Variation of parameters, 93, 94, 98
Systematicity is the most capacious concept applicable to any object of research, which represents all the possible manifestations of systems. Law is a systemic phenomenon, characterized by an organized structure, which is characteristic of a great number of constituent elements and presence of different levels of functional connections between them. "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis X". Rostov-on-Don, 22 - 27 AUGUST, 2021. The conference is dedicated to the 80 annual jubilee of professor Stefan G. Samko (Russia, Portugal). Working languages: English, Russian. Arrival: August 22nd. Departure: August 27th. Working days of the conference: 23 - 26 of August 2021. Deadline for registration and for abstracts submission: 01 August 2021. Theory and problems of social psychology. Item Preview. > remove-circle. Share or Embed This Item. EMBED. Theory and problems of social psychology. by. Krech, David. Publication date. 1948. Topics. Social psychology. Start studying Theory and problems test 1. Learn vocabulary, terms and more with flashcards, games and other study tools. Which of the following organizations is responsible for setting international financial reporting standards. D. International accounting standards board. According to the IASB framework for the preparations and presentation of financial statements, the fundamental qualitative characteristic of relevance includes. C .Predictive value and confirmatory value. Based on the problematic issues of a general theoretical nature, students’ skills of considering controversial issues and validity of their position are formed. Instructor: Credit points: 3 Faculty: Faculty of Law Language: Russian Level: Specialist Academic hours: 36. Syllabus Section I. 1. Actual problems of subject and method of the Theory of State and Law. Section II. 2. Problems of the origin and evolution of the state and law. Section III. 3. Problems of the definition, identifying key features and nature of the state.