LABORATORY CORROSION TESTS AND STANDARDS

A symposium by
ASTM Committee G-1 on
Corrosion of Metals
Bal Harbour, FL, 14–16 Nov. 1983

ASTM SPECIAL TECHNICAL PUBLICATION 866
Gardner S. Haynes and Robert Baboian,
Texas Instruments, Incorporated,
editors

ASTM Publication Code Number (PCN)
04-866000-27

1916 Race Street, Philadelphia, PA 19103
William Henry Ailor, Jr.

15 July 1917 to 9 November 1983

Dedication

This volume, recording the activities of the International Symposium on Laboratory Corrosion Tests and Standards and serving as a permanent record of contributions to the field of laboratory corrosion testing, is hereby dedicated as a living memorial to our professional colleague and personal friend, Bill Ailor, who passed away on 9 November 1983.

Bill received his Bachelor of Science degree in history from the University of Tampa in 1939 and his Bachelor of Chemical Engineering from North Carolina State University in 1948.

A Lieutenant Commander in the U.S. Naval Reserve from 1942 to 1946 and from 1952 to 1953, Bill joined the Atlantic Coast Line Railroad as a chemist in 1948. In 1953, he became a research engineer in diesel engineering for North Carolina State University. He was an adjunct math instructor for Virginia Commonwealth University from 1959 to 1979, and joined Reynolds Metals Company in 1954 as a research engineer. He retired in 1982.

The author of 45 papers and editor of four books, Bill concentrated his career in atmospheric, marine, and deep sea corrosion, corrosion testing, engine coolant testing, and diesel engineering.

Bill served as Chairman of Committee G-1 on Corrosion of Metals from 1966 to 1972 and was active in committee
task groups and subcommittees for many years including chairing the ASTM Advisory Committee on Exposure Testing Facilities. In addition to his many other honors, he received the ASTM Award of Merit in 1970.

Bill will truly be missed, by his many friends and colleagues in Committee G-1. His many contributions to the Committee, however, provide a legacy that will serve its membership for years to come.
Foreword

The symposium on Laboratory Corrosion Tests and Standards was presented at Bal Harbour, FL, 14–16 Nov. 1983. The symposium was sponsored by ASTM Committee G-1 on Corrosion of Metals. Gardner S. Haynes and Robert Baboian of Texas Instruments, Incorporated presided as chairmen of the symposium and are editors of this publication.
Related
ASTM Publications

Atmospheric Corrosion of Metals, STP 767 (1982), 04-767000-27
Electrochemical Corrosion Testing, STP 727 (1981), 04-727000-27
Corrosion of Reinforcing Steel in Concrete, STP 713 (1980), 04-713000-27
Stress Corrosion Cracking—The Slow Strain-Rate Technique, STP 665 (1979), 04-665000-27
Intergranular Corrosion of Stainless Alloys, STP 656 (1978), 04-656000-27
A Note of Appreciation
to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications
Contents

Introduction 1

DESIGN AND INTERPRETATION OF LABORATORY TESTS

An Engineering View of Laboratory Corrosion Tests— 5
RICHARD S. TRESEDER

Developing an Accelerated Test: Problems and Pitfalls— 14
SARA J. KETCHAM, AND EDWARD J. JANKOWSKY
Discussion 22

Microcomputer Data Acquisition for Corrosion Research— 24
DAVID G. TIPTON
Discussion 34

Corrosion Test Loop—TE-LIN YAU AND R. TERRENCE WEBSTER 36

An Accelerated Simulated Can Corrosion Test for Tinplate— 48
MALCOLM E. WARWICK AND WILLIAM B. HAMPShIRE
Discussion 64

Laboratory Electrochemical Test Methods—OLIVER W. SIEBERT 65
Discussion 89

A Method to Avoid Crevice Corrosion in Electrochemical Determination of Pitting Potentials—TERO HAKkarainen 91
Discussion 106

Current Versus Voltage Hysteresis: Effect on Electrometric Monitoring of Corrosion—STANLEY T. HIROZAWA 108

Electromechanical Impedance Tests for Protective Coatings— 122
FLORIAN MANSFLED AND MARTIN W. KENDIG
Discussion 142
Applications of Electrochemical Techniques in Screening Metallic-Coated Steels for Atmospheric Use—Neal S. Berke and John J. Friel

Discussion

Development of a Fluorescent Ultraviolet and Condensation Apparatus with a Light Energy Control System—Shigeru Suga

Laboratory Tests for Specific Environments

Corrosion Testing in Potable Waters—Kate Nielsen

Discussion

Corrosion of Mild Steel in Distilled Water and Chloride Solutions: Development of a Test Method—Peter E. Francis and Antony D. Mercer

Discussion

A Comparison of Actual and Estimated Long-Term Corrosion Rates of Mild Steel in Seawater—Frederic D. Bogar and Miller H. Peterson

Discussion

Once Through Versus Recirculated Seawater Testing for Calcareous Deposit Polarization of Cathodically Protected Steel—Tracy L. Nye, Samuel W. Smith, and William H. Hartt

A Corrosiveness Test for Fibrous Insulations—Stephen V. Crume

Electrochemical Methods for Evaluating Corrosion Inhibitors in Strong Acid Systems—Sheldon W. Dean, Robert A. Woodroof, and James Nichols

Discussion

Laboratory Corrosion Testing of Metals and Alloys in Environments Containing Hydrogen Sulfide—Robert D. Mack, S. Mark Wilhelm, and Beverlee G. Steinberg

Development of an Environmental Wear Corrosion Test for Coinage Materials—Robert Baboian and Gardner S. Haynes
Laboratory Tests for Corrosion of Steel in Concrete—
PHILIP A. ROOSKOPF AND R. CRAIG VIRNELSON

Corrosion Induced Deformation Behavior of Brick Masonry Wall Panels—STEPHEN A. DIAL, RAMON L. CARRASQUILLO, AND JOHN E. BREEN

TESTS FOR CORROSION TYPE

Recent Developments in Test Methods for Investigating Crevice Corrosion—ROBERT M. KAIN AND THAD S. LEE
Discussion

A Technique for Characterizing Crevice Corrosion Under Hydrothermal Conditions—HIMASHU JAIN, TAE-MOON AHN, AND PETER SOO
Discussion

Jet-in-Slit Test for Studying Erosion-Corrosion—
MASANOBU MATSUMURA, YOSHINORI OKA, SATOFUMI OKUMOTO, AND HIROYUKI FURUYA
Discussion

MTI Corrosion Tests for Iron- and Nickel-Base Corrosion Resistant Alloys—RICHARD S. TRESEDER AND EDWARD A. KACHIK

Evaluating the Suitability of the NACE Standard Test, TM-01-77, for Testing 13% Chromium Martensitic Stainless Steels for Sulfide Stress Cracking Resistance—TIMOTHY D. WHITEHEAD AND CALVIN H. BALOUN

Slow Strain Rate Testing in High-Purity Water at Controlled Electrode Potentials—BO ROSBORG AND ANDERS ROSENGREN
Discussion
The Effect of Strain Rate on the Stress Corrosion Cracking of Steels for Prestressing Concrete—V. Sánchez Gálvez, Luis Caballero, and Manuel Elíces

An Improved Intergranular Corrosion Test for HASTELLOY® Alloy C-276—Paul E. Manning

Surface Preparation Requirements for ASTM A 262—John M. Schluter and Joseph A. Chivinsky

APPENDIX OF SELECTED ASTM STANDARDS

A 262-85 Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels

B 117-85 Method of Salt Spray (Fog) Testing

G 1-81 Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens

G 5-82¹ Practice for Standard Reference Method for Making Potentiostatic Anodic Polarization Measurements

G 15-85a Definitions of Terms Relating to Corrosion and Corrosion Testing

G 31-72 (1985)¹ Practice for Laboratory Immersion Corrosion Testing of Metals

G 34-79 Test Method for Exfoliation Corrosion Susceptibility 2XXX and 7XXX Series Aluminum Alloys (EXCO Test)

G 46-76 (1980) Recommended Practice for Examination and Evaluation of Pitting Corrosion
G 48-76 (1980)" Test Methods for Pitting and Crevice Corrosion 562
Resistance of Stainless Steels and Related Alloys by the Use of Ferric Chloride Solution

G 61-78 Practice for conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion 566

G 71-81 Practice for Conducting and Evaluating Galvanic Corrosion Tests in Electrolytes 572

G 85-85 Practice for Modified Salt Sprat (Fog) Testing 578

G 87-84 Practice for Conducting Moist SO₂ Tests 584

SUMMARY

Summary 591

Index 597