CONTENTS

Executive Summary .. 1
I. Introduction ... 3
II. Discipline-Specific, Multidisciplinary, and Integrated Science in FISC 4
III. FISC Science Goals.. 7
IV. FISC Core Capabilities and Continued Science Excellence... 8
 Agricultural and Urban Impacts on Water Quantity, Water Quality, and Ecosystems 8
 Conservation Science .. 10
 Contaminants, Pathogens, and Other Environmental Stressors ... 11
 Ecosystem History and Climate Change ... 12
 Ecosystem Restoration Studies .. 13
 Effects of Invasive Species ... 14
 Interaction among Ground Water, Surface Water, and Ecosystems ... 14
 Natural Hazards and Associated Coastal Processes ... 16
 Water Quality and Availability .. 17
V. New Science Directions .. 18
 Linking Earth Sciences to Human Health ... 18
 Modeling Techniques .. 18
 New Geographical Areas ... 19
 New Scales .. 20
 New Technologies .. 20
 Superstations .. 21
References .. 21
Appendix 1. Charge to Science Council ... 22
Appendix 2. Definitions of Discipline Integration .. 23
Appendix 3. Fiscal Year 2004 Cooperator List for FISC ... 24
Appendix 4. Background Documents .. 26

FIGURES

1. Offices of the Florida Integrated Science Centers (FISC) ... 3
2. World map showing field areas of FISC researchers .. 4
3. Flow chart of FISC Science Plan ... 4
4. Distribution of FISC research dollars among the three levels of integration in FY03 5
5. Distribution of FISC FY03 funding by Discipline and level of integration 5
6. Example science topics, associated data needs, and integrative activities 10
7. Photograph of green mollusk (Perum viridis) .. 14
8. Map showing geographic areas designated as priority sites for new science efforts 19

TABLE

1. Intersections between FISC and Eastern Region science priorities ... 9
Foreword Facing Tomorrow’s Challenges—U.S. Geological Survey Science in the Decade 2007–2017. In 1996, the U.S. Geological Survey (USGS) drafted a strategic plan that considered the internal and external drivers and challenges we faced at that time. Within the USGS, the SST sought input from USGS program coordinators, senior scientists, an advisory group of about 50 USGS researchers selected for their breadth of expertise, a USGS leadership training class, and ultimately, the entire USGS workforce. Subsets of the SST met with groups of employees at several USGS worksites. The USGS will use its information resources to create a more integrated and accessible environment for its vast resources of past and future data. Geological Sciences. Health Education and Behavior. Health Science. Animal Sciences graduates work with the science and business of producing domestic livestock species or animal-related products. They may also pursue veterinary studies for future work with co Learn more. The Art History minor, New World School of the Arts, is offered by the School of Art and Art History and is available to all students. Students must meet with the art advisor to apply to this minor. Learn more. Art minor. The Art minor provides the opportunity to combine creative and artistic practice with other academic pursuits. Students seeking this minor are not necessarily pursuing careers as practicing pr Learn more. Geological and Planetary Sciences Foundation Students must complete a set of six courses that introduce the properties of planetary materials, the processes that change the Earth and other planets, and the timescales over which those processes act. These courses provide a broad foundational knowledge that can lead to specialization in many different disciplines of the geological and environmental sciences. To gain an understanding of the breadth of subject areas within the geological sciences, students are required to take eight of the following courses (24–34 units). At least six of these courses must be 100-level courses from the Geological Sciences list below, while two may be from the Supporting Disciplines list. Creation of integrated information-software complexes of a new generation for digital productions Baranova Irina Vyacheslavovna, Maiorov Sergey Vasilievich, Zhao Kai. Certainly, the benchmarks and benchmarks for the development of industries within the housing sector are mostly contradictory and multidirectional, which does not allow us to use formal approaches for developing optimal solutions for the comprehensive modernization of this sphere. The Geological Survey of Canada (GSC) is part of the Earth Sciences Sector of Natural Resources Canada. The GSC is Canada’s oldest scientific agency and one of its first government organizations. It was founded in 1842 to help develop a viable Canadian mineral industry by establishing the general geological base on which the industry could plan detailed investigations. Its mandate was to assist in developing a viable Canadian mineral industry by establishing the general geological base on which the industry could plan further detailed investigations. Throughout its long history, the GSC has played a leading role in the exploration of Canada. No Stone Unturned: The First 150 years of the Geological Survey of Canada. Report a problem or mistake on this page.